Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana.
نویسندگان
چکیده
Plants interact with their environment and they often flower earlier under stress conditions, but how such stress-induced flowering is regulated remains poorly understood. Here evidence is presented that the miR169 family plays a key role in stress-induced flowering in plants. The microRNA (miRNA) miR169 family members are up-regulated in Arabidopsis, maize, and soybean under abiotic stresses. Overexpression of miR169d in Arabidopsis results in early flowering, and overexpression of the miR169d target gene, AtNF-YA2, especially a miR169d-resistant version of AtNF-YA2, results in late flowering. The results suggest that the miR169 family regulates stress-induced flowering by repressing the AtNF-YA transcription factor, which in turn reduces the expression of FLOWERING LOCUS C (FLC), allowing for the expression of FLC target genes such as FLOWERING LOCUS T (FT) and LEAFY (LFY) to promote flowering. It was shown that the expression of genes or miRNAs involved in the other flowering pathways, namely the photoperiod (CO), ambient temperature (SVP), ageing (miR156), and gibberelin (SOC1) pathways, was not affected in miR169d-overexpressing plants, suggesting that stress-induced early flowering is a novel signalling pathway mediated by miR169.
منابع مشابه
Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملThe Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance.
Nuclear factor Y (NF-Y) is a ubiquitous transcription factor composed of three distinct subunits (NF-YA, NF-YB, and NF-YC). We found that the Arabidopsis thaliana NFYA5 transcript is strongly induced by drought stress in an abscisic acid (ABA)-dependent manner. Promoter:beta-glucuronidase analyses showed that NFYA5 was highly expressed in vascular tissues and guard cells and that part of the in...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 65 1 شماره
صفحات -
تاریخ انتشار 2014